General AC Drive

G100/G100C

3Phase 200V-240V 0.4kW-22kW (1/2-30HP) 3Phase 200V-240V 0.4kW-4.0kW (1/2-5HP) 3Phase 380V-480V 0.4kW-22kW (1/2-30HP) 3Phase 380V-480V 0.4kW-4.0kW (1/2-5HP)

LSELECTRIC

Contents
04 Features
10 Model Name and Description
11 Specifications
13 Wiring
15 Power Terminal
16 Cable selection
17 Control Terminal
18 Keypad Functions
24 Peripheral Devices
26 Dimensions

General Drive G100/G100C .e.ç•品

The G100 is the solution for general drive applications because of its high performance sensorless vector control premium quality and high reliability.

Great Reliability

-Meets UL 61800-5-1
-Military (MIL 217Plus) design based methodology

- Enhanced materials and manufacturing processes

Great Performance

- Enhanced motor control-sensorless \& V/F performance
- User-friendly-easy tuning sensorless control
- Suitable for most applications

User Friendly

- Easy to install, use and maintain
- All in One Industrial Ethernet

Solution RAPIEnet+
(RAPIEnet, EtherNet/IP, Modbus TCP)

Great Reliability

G100 is designed to meet global standards through upgraded design, materials and manufacturing improving its endurance for harsh environments.

UL61800-5-1 Design

Satisfied the new UL certification

Robust Design \quad| Construction of the air flow design minimizes exposure of critical |
| :--- |
| components (IGBT, PCB, etc.) from outside contaminants. |

Built-in EMC Filter Built-in C3 EMC filter and external option C2 EMC filter(footprint type) to meet EN61800-3 standards.
(For more information about external option C2 EMC filter[footprint type], please check page 30~31.)

Fan Lifecycle A keypad displays a replacement warning at 50,000 hours of fan operating Diagnosis

MIL217Plus Based

Design

- Enhanced reliability based on MIL217Plus

Category	G100
Estimated Life Cycle	240,455 hrs(27 yrs)
	(Accelerated life test result:295,951 hrs)
Reliablity Test Method	MTTF
Standard	MIL-HDBK-217F
	RIAC HDBK 217Plus
Ambient Temperature	$30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$

Material Design - Enhanced thermal resistance and intensity through upgraded materials

- Increased thickness to prevent damage

Great Performance

The G100 has an advanced sensorless vector control along with a highly adaptable V/F mode making it one of the most versatile drives on the market.

V/F Acceleration and Deceleration Function

- Auto torque boost(ATB) enhancing acceleration performance on V / F mode
- Flux braking enhancing deceleration performance on V/F mode

Sensorless Vector Control
$-0.5 \mathrm{~Hz}$
$-1 \mathrm{~Hz}$
$\rightarrow 3 \mathrm{~Hz}$
$-5 \mathrm{~Hz}$
$\times 10 \mathrm{~Hz}$

- 20 Hz
$-30 \mathrm{~Hz}$
- -40 Hz
$-50 \mathrm{~Hz}$
$-55 \mathrm{~Hz}$
$-60 \mathrm{~Hz}$

KEB Operation
(Kinetic Energy Buffering)

Performs enhanced high torque under low speed with sensorless vector control

DC link voltage is maintained during power loss or blackout by using regenerative energy from a motor.

Flying Start
Select optimal flying start operation for different applications

KEB Operation

Flying Start Operation

Features

Userfriendly Design

G100 is convenient to install, control, G100 is convenient for installation, control, and maintenance with diverse functions.
(1) Built-in Potentiometer

Easy operation with built-in potentiometer

Remote Keypad
Copy parameter (Read/Write)
using remote keypads

[^0]
(2) Various communication options

Provides Dual Port Ethernet option, RAPIEnet+
About RAPIEnet+
Real-time, hybrid \& ring topology-based industrial Ethernet solution, integrating Modbus TCP/IP, EtherNet/IP and RAPIEnet for IoT and futureoriented technology for high performance \& efficiency.

- RAPIEnet+ (RAPIEnet, EtherNet/IP, Modbus TCP Protocol support)
- Profibus-DP, CANopen

(2) PC Tools (DriveView 9)

New version of PC tool

26 Easy Modbus Communication

 Connection2 type of connection of Modbus communication

- RJ45 Port
- I/O (S+, S-)

3 QR Code

View manuals and various information from the QR code printed on the front cover.

(4) DIN rail for Side by Side installation

Easy installation with DIN rail (up to 4 kW)

(5) Fan Replacement

Simple cooling fan replacement procedure

6 I/O Terminal for convenient wiring

Easy wiring with $5 \mathrm{~mm} \mathrm{I} / \mathrm{O}$ pitch

Model Name and Description

G100
Drive Capacity 1 3-Phase 200V
※ (F): Built-in EMC or Non-EMC type
G100C

Drive Capacity	3-Phase 200V	3-Phase 400V
0.4 kW	LSLV0004G100C-2EONN	LSLV0004G100C-4EONN
0.75 kW	LSLV0008G100C-2EONN	LSLV0008G100C-4EONN
1.5 kW	LSLV0015G100C-2EONN	LSLV0015G100C-4EONN
2.2 kW	LSLV0022G100C-2EONN	LSLV0022G100C-4EONN
$4.0 \text { kW }$	LSLV0040G100C-2EONN	LSLV0040G100C-4EONN

※ G100C-2/4 4kW will be released in 2023

Model Name

3-Phase 200V Class (0.4~22kW)

LSLV $\square \square \square \square \mathrm{G100}$ (C)-2 $\square \square \square \square$			0004	0008	0015	0022	0040	0055	0075	0110	0150	0185	0220
Motor Rating	Heavy Duty [HD]	[HP]	0.5	1.0	2.0	3.0	5	7.5	10	15	20	25	30
		[kW]	0.4	0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22
	Normal Duty [ND]	[HP]	1.0	2.0	3.0	5	7.5	10	15	20	25	30	-
		[kW]	0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22	-
Output Rating	Capacity [kVA]	Heavy Duty (HD)	1.0	1.9	3.0	4.2	6.5	9.1	12.2	17.9	22.9	28.6	33.5
		Normal Duty (ND)	1.2	2.3	3.8	4.6	6.9	11.4	15.2	21.3	26.7	31.2	-
	Rated Current [A]	Heavy Duty (HD)	2.5	5.0	8.0	11.0	17.0	24.0	32.0	47	60	75	88
		Normal Duty (ND)	3.1	6.0	9.6	12.0	18.0	30.0	40.0	56	70	82	-
	Rated Current $[\mathrm{A}] / 60 \mathrm{~Hz}$ (1-Phase Input)	Heavy Duty (HD)	1.5	2.8	4.6	6.1	9.3	12.8	17.4	26.8	34	41	48
		Normal Duty (ND)	2.0	3.6	5.9	6.7	9.8	16.3	22.0	31	38	45	-
	Rated Current [A]/50Hz (1-Phase Input)	Heavy Duty (HD)	1.5	2.7	4.5	5.9	9.1	12.4	16.9	26	33.1	39.9	46.7
		Normal Duty (ND)	1.9	3.5	5.7	6.5	9.5	15.8	21.3	30	36.9	43.7	-
	Frequency [Hz]		$0 \sim 400 \mathrm{~Hz}$ (IM Sensorless: $0 \sim 120 \mathrm{~Hz}$)					$0 \sim 400 \mathrm{~Hz}$ (IM Sensorless: $0 \sim 120 \mathrm{~Hz}$)					
	Voltage [V]		3-Phase 200~240V					3-Phase 200~240V					
Input Rating	Voltage [V]		3-Phase 200~240VAC (-15\%~+10\%)					3-Phase 200~240VAC (-15\% ~ 10%)					
	Frequency [Hz]		$50 \sim 60 \mathrm{~Hz}(\pm 5 \%)$					$50 \sim 60 \mathrm{~Hz}$ ($\pm 5 \%$)					
	Rated Current [A]	Heavy Duty [HD]	2.2	4.9	8.4	11.8	18.5	25.8	34.9	53.2	68.4	85.5	101.6
		Normal Duty [ND]	3.0	6.3	10.8	13.1	19.4	32.7	44.2	63.8	79.8	94.6	-
G100 Weight [kg]			1.04	1.06	1.36	1.4	1.89	3.08	3.21	4.84	7.6	11.1	11.18
G100C Weight [kg]			0.81	0.83	1.10	1.13	1.78	-	-	-	-	-	-

- Applicable capacity range with G100C ($0.4 \mathrm{~kW} \sim 2.2 \mathrm{~kW}$) •G100C doesn't support built-in EMC filter. (Not possible to add filter)

3-Phase 400V Class (0.4~22kW)

LSLV $\square \square \square \square \mathrm{G100}(\mathrm{C})$-4 $\square \square \square \square$			0004	0008	0015	0022	0040	0055	0075	0110	0150	0185	0220
Motor Rating	Heavy Duty [HD]	[HP]	0.5	1.0	2.0	3.0	5	7.5	10	15	20	25	30
		[kW]	0.4	0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22
	Normal Duty [ND]	[HP]	1.0	2.0	3.0	5	7.5	10	15	20	25	30	40
		[kW]	0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22	30
Output Rating	Capacity [kVA]	Heavy Duty (HD)	1.0	1.9	3.0	4.2	6.5	9.1	12.2	18.3	23.6	29.7	34.3
		Normal Duty (ND)	1.5	2.4	3.9	5.3	7.6	12.2	17.5	23.6	29.0	34.3	46.5
	Rated Current [A]	Heavy Duty (HD)	1.3	2.5	4.0	5.5	9.0	12.0	16.0	24	31	39	45
		Normal Duty (ND)	2.0	3.1	5.1	6.9	10.0	16.0	23.0	31	38	45	61
	Rated Current [A]/60Hz (1-Phase Input)	Heavy Duty (HD)	0.7	1.4	2.1	2.8	4.9	6.4	8.7	15	18	23	27
		Normal Duty (ND)	1.3	1.9	2.8	3.6	5.4	8.7	12.6	18	23	27	35
	Rated Current [A]/50Hz (1-Phase Input)	Heavy Duty (HD)	0.7	1.4	2.0	2.7	4.8	6.2	8.5	14.6	17.4	22.3	26.2
		Normal Duty (ND)	1.3	1.8	2.7	3.5	5.2	8.4	12.2	17.4	22.2	26.1	33.8
	Frequency [Hz]		$0 \sim 400 \mathrm{~Hz}$ (IM Sensorless: $0 \sim 120 \mathrm{~Hz}$)					$0 \sim 400 \mathrm{~Hz}$ (IM sensorless: $0 \sim 120 \mathrm{~Hz}$)					
	Voltage [V]		3-Phase 380~480V					3-Phase 380~480V					
Input Rating	Voltage [V]		3-Phase 380~480VAC (-15\% $\sim+10 \%$)					3-Phase 380~480VAC (-15\% $\sim+10 \%$)					
	Frequency [Hz]		$50 \sim 60 \mathrm{~Hz}$ ($\pm 5 \%$)					$50 \sim 60 \mathrm{~Hz}(\pm 5 \%)$					
	Rated Current [A]	Heavy Duty [HD]	1.1	2.4	4.2	5.9	9.8	12.9	17.5	27.2	35.3	44.5	51.9
		Normal Duty [ND]	2.0	3.3	5.5	7.5	10.8	17.5	25.4	35.3	43.3	51.9	70.8
G100 Weight [kg] (EMC Filter Built-in)			$\begin{gathered} 1.02 \\ (1.04) \end{gathered}$	$\begin{gathered} 1.06 \\ (1.08) \end{gathered}$	$\begin{gathered} 1.4 \\ (1.44) \end{gathered}$	$\begin{gathered} 1.42 \\ (1.46) \end{gathered}$	$\begin{array}{\|c} 1.92 \\ (1.98) \end{array}$	$\begin{array}{c\|} \hline 3.08 \\ (3.24) \end{array}$	$\begin{array}{\|c} \hline 3.12 \\ (3.28) \\ \hline \end{array}$	$\begin{gathered} \hline 4.89 \\ (5.04) \end{gathered}$	$\begin{gathered} 4.91 \\ (5.06) \end{gathered}$	$\begin{gathered} 7.63 \\ (7.96) \end{gathered}$	$\begin{gathered} 7.65 \\ (7.98) \end{gathered}$
G100C Weight [kg]			0.82	0.85	1.14	1.14	1.77	-	-	-	-	-	-

- Applicable capacity range with $\mathrm{G100C}$ ($0.4 \mathrm{~kW} \sim 2.2 \mathrm{~kW}$)
- G100C doesn't support built-in EMC filter. (Not possible to add filter)
- Maximum applicable capacity is indicated in case of using a 4 -pole standard motor
- For the rated capacity, 200 and 400 V class input capacities are based on 220 and 440 V , respectively.
- The rated output current is limited based on the carrier frequency set at Cn .04 .
- The output voltage becomes $20-40 \%$ lower during no-load operations to protect
the inverter from the impact of the motor closing and opening ($0.4-4.0 \mathrm{~kW}$ models only).

Specifications

Control

Control Method	V/F, Slip Compensation, Sensorless Vector
Frequency Setting Resolution	Digital command: 0.01 Hz Analog command: $0.06 \mathrm{~Hz}($ maximum frequency: 60 Hz)
Frequency Accuracy	1% of the maximum output frequency
V/F Pattern	Linear, squared, user V/F
Overload Capacity	HD: $150 \% 1$ minute, ND: $120 \% 1$ minute
Torque Boost	Manual/Automatic torque boost

Operation

Operation Mode		Select key pad, terminal strip, or communication operation	
Frequency Setting		Analog: - $10 \sim 10[\mathrm{~V}], 0 \sim 10[\mathrm{~V}], 4 \sim 20[\mathrm{~mA}]$ Digital: Keypad	
Operation Function		PID control, 3-wire operation, Frequency limit, Second function, Anti-forward and reverse direction rotation, Commercial transition, Speed search, Power braking, Leakage reduction, Up-down operation, DC braking, Frequency jump, Slip compensation, Automatic restart, Automatic tuning, Energy buffering, Flux braking, Fire mode	
Input	Multi-Function Terminal (5 Points)	NPN (Sink) / PNP (Source) Selectable	
		Function: Forward run, Reverse run, Reset, External trip, Emergency stop, Jog operation, Multi-step frequencyhigh, middle, low, Multi-step acceleration/ deceleration-high, middle, low, DC braking at stop, 2nd motor select, Frequency up/down, 3 -wire operation, Change into normal operation during PID operation, Change into main body operation during option operation, Analog command frequency fixing, Acceleration/deceleration stop etc. Selectable	
	Analog Input	V1: -10~10V, $124 \sim 20 \mathrm{~mA}$	
Output	Multifunction Relay Terminal	Fault output and drive operation status output	(N.O., N.C.) less than AC 250V 1A, less than DC 30V 1A
	Analog Output	$0 \sim 12 \mathrm{Vdc}$: Frequency, Output current, Output voltage, DC stage voltage etc. selectable	

Protective Function

	Over current trip, external signal trip, ARM short current fault trip, over heat trip, input imaging trip, ground trip, motor over heat trip, I// board link trip, no motor trip, parameter writing trip, emergency stop trip, command loss trip, external memory error, CPU watchdog trip, motor light load trip	Over voltage trip, temperature sensor trip, inverter over heat, option trip, output image trip, inverter overload trip, fan trip, pre--PID operation failure external brake trip, low voltage trip during operation, low voltage trip, analog input error, motor overload trip, over torque trip, under torque trip
Alarm	Command loss trip warning, overload warning, light load warning, inverter overload warning, fan operation warning, braking resistance braking rate warning, rotor time constant tuning error, inverter pre-overheat warning, over torque warning, under torque warning	
Momentary Power Loss	HD below 15ms (ND below 8ms): Continuous operation (To be within rated input voltage, rated output) HD above 15ms (ND above 8ms): Automatic restart operation enable	

Environment

Cooling Type	Forced fan cooling structure
Protection Degree	IP20/UL Open (Default), UL Enclosed type 1 (Option), IP30(Remote Keypad)
Ambient Temperature	Ambient temperature under the condition of no ice or frost. HD: $-10 \sim 50^{\circ} \mathrm{C}\left(14 \sim 122^{\circ} \mathrm{F}\right) / \mathrm{ND}:-10 \sim 40^{\circ} \mathrm{C}\left(14 \sim 104^{\circ} \mathrm{F}\right)$ [However, recommended to use load below 80% when using at $50^{\circ} \mathrm{C}$ under light load]
Humidity	Relative humidity below 95\% RH (no dew formation)
Storage Temperature	$-20 \sim 65^{\circ} \mathrm{C}\left(-4 \sim 149^{\circ} \mathrm{F}\right)$
Surrounding Environment	Environment Level: 3C3(IEC60721-3-3) classifications (for SO2, H2S, CL, NO2) No corrosive gas, flammable gas, oil mist and dust etc., indoors
Altitude, Vibration	Below $1,000 \mathrm{~m}$ (From 1000 to 4000 m , the rated input voltage and rated output current of the drive must be derated by 1% for every 100 m .), below $9.8 \mathrm{~m} / \mathrm{sec} 2(1 \mathrm{G})$
Pressure	70~106kPa

$0.4 \sim 7.5 \mathrm{~kW}$

General Drive

 G100/G100CWiring

Terminal Labels	Name	Description
$\left(\frac{1}{\sigma}\right)$	Ground terminal	Connect earth grounding.
$\mathrm{R}(\mathrm{L} 1) / \mathrm{S}(\mathrm{L} 2) / \mathrm{T}(\mathrm{L} 3)$	AC power input terminal	Mains supply AC power connections.
$\mathrm{B} 1 / \mathrm{B} 2$	Brake resistor terminals	Brake resistor wiring connection.
$\mathrm{U} / \mathrm{V} / \mathrm{W}$	Motor output terminals	3-phase induction motor wiring connections.

Capacity (kW)		Terminal Screw Size R/S/T, $U / V / W: M 3$	Rated Screw Torque (Kgfcm/Nm) $\mathrm{R} / \mathrm{S} / \mathrm{T}$, $\mathrm{U} / \mathrm{V} / \mathrm{W}: 5.1 / 0.5$	Capacity (kW)		Terminal Screw Size	Rated Screw Torque (Kgfcm/Nm)
3-Phase 200V Class	$\begin{gathered} 0.4 \\ \hline 0.75 \end{gathered}$	R/S/T, U/V/W:M3	R/S/T, U/V/W:5.1/0.5	3-Phase 400 V Class	0.4	R/S/T, U/V/w: M3.5	$\begin{gathered} \mathrm{R} / \mathrm{S} / \mathrm{T} \\ \mathrm{U} / \mathrm{W}: \mathrm{W}: 10.3 / 1.0 \end{gathered}$
					0.75		
	1.5	R/S/T, U/V/W:M4	$\begin{gathered} \mathrm{R} / \mathrm{S} / \mathrm{T}, \\ \mathrm{U} / \mathrm{V} / \mathrm{W}: 12.1 / 1.2 \end{gathered}$		1.5		
	2.2				2.2		
	4	R/S/T, U/V/W : M4	R/S/T, U/V/W : 18.4/1.8		4	R/S/T, U/V/W : M4	R/S/T, U/V/W: 18.4/1.8
	5.5	R/S/T : M5	R/S/T : 24.0/2.4		5.5	R/S/T,	R/S/T:14.3/1.4
	7.5	(Ground:M3)	(Ground :5.1/0.5)		7.5	(Ground: M3)	(Ground :5.1/0.5)
	11	R/S/T,	R/S/T,		11		
	15	U/V/W:M5	U/V/W : 25.34/2.5		15	R/S/T,	R/S/T,
	18.5				18.5	U/V/W:M5	U/V/W : 25.34/2.5
	22	U/V/W: M6	U/V/W : 30.5/3		22		

[^1]
G100/G100C

Cable selection

Ground Cable and Power Cable Specifications

Load (kW)		Ground Wire		Input/Output Power Wire				Terminal Block Size	
		mm^{2}	AWG	mm^{2}		AWG			
		R/S/T		U/V/W	R/S/T	U/V/W			
3-Phase 200V	0.4		4	12	1.5	1.5	16	16	M3(M3 .5*)
	0.75								
	1.5	4	12	4	2.5	12	14	M4(M3.5*)	
	2.2	4	12	4	2.5	12	14	M4	
	4	6	10	6	6	10	10	M4	
	5.5	6	10	16	10	6	8	4	
	7.5	6	10	16	10	6	8	4	
	11	14	6	16	16	6	6	M5	
	15			25	25	4	4		
	18.5			35	25	2	4	M6	
	22			35	35	2	2	M6	
3-Phase 400V	0.4								
	0.75	25	14	15	15	16	16	M3 5	
	1.5	2.5	14	1.5	1.5	16	16	M3.5	
	2.2								
	4	6	10	2.5	2.5	14	14	M4	
	5.5	6	10	10	6	8	10	M4	
	7.5	6	10	10	6	8	10	M	
	11			10	10	8	8		
	15			10	10	8	8		
	18.5	14	6	16	10	6	8	M5	
	22			25	10	4	6		

※ G100C
※ Caution

- Wherever possible use cables with the largest cross-sectional area for mains power wiring, to ensure that voltage drop does not exceed 2%.
- Use copper cables rated for $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ for power terminal wiring.
- Use copper cables rated for $300 \mathrm{~V}, 75^{\circ} \mathrm{C}$ for control terminal wiring.

Signal (Control) Cable Specifications

Terminals	Control Terminal Wiring			
	Without Crimp Terminal Connectors		With Crimp Terminal Connectors	
	mm^{2}	AWG	mm ${ }^{2}$	AWG
24/P1~P5/CM				
A1/B1/C1/A2/C2, VR/V1/I2/AO/CM, Q1/ $E G^{*} / S+/ S-$	0.8	18	0.5	20

[^2]

Terminals	Terminal Screw Size	Screw Torque (Kgfcm/Nm)
P1~P5/CM/VR/V1/I2/AO/24/S+/S-	M 2	$2.2 \sim 2.5 / 0.22 \sim 0.25$
$\mathrm{~A} 1 / \mathrm{B} 1 / \mathrm{C} 1, \mathrm{~A} 2 / \mathrm{C} 2$	M 2.6	$4.0 / 0.4$

- Only use the specified torque on the screw heads otherwise damage could occur.

Loose screws can cause overheating and damage.

Control Board Switches and Connecto

Switch			Description
SW1		NPN/PNP mode selection switch	
SW2		Terminating Resistor selection switch	
RJ45 Port		Connect to Remote I/O or smart copier, connect with RS485 communication	
Category	Terminal Labels	Name	Description
Multi-function Terminal Configuration	P1~P5	Multi-function Input 1-5	Configurable for multi-function input terminals. Factory default terminals and setup are as follows. - P1: Fx • P2: Rx - P3: BX •P4: RST •P5: Speed-L
	CM	Sequence common terminal	Common terminal for analog terminal inputs and outputs.
Analog Input	VR	Potentiometer frequency reference input	Used to setup or modify a frequency reference via analog voltage or current input. - Maximum voltage output: 12 V - Maximum current output: 100 mA - Potentiometer: $1 \sim 5 \mathrm{k} \Omega$
	V1	Voltage input for frequency reference input	Used to setup or modify a frequency reference via analog voltage input terminal. - Unipolar: 0-10V (12V Max.) • Bipolar:' -10-10V ($\pm 12 \mathrm{~V}$ Max.)
	12	Current input for frequency reference input terminal	Used to setup or modify a frequency reference via current input terminal. - Input current: 4-20 mA - Maximum Input current: 24mA - Input resistance: 249Ω
Analog Output	AO	Voltage output terminal	Used to send inverter output information to external devices: Output frequency, output current, output voltage, or a DC voltage. - Output voltage: $0-10 \mathrm{~V}$ - Maximum output voltage/Current: $12 \mathrm{~V}, 10 \mathrm{~mA}$ - Factory default output: Frequency
	24	External 24V power source	Maximum current output: 100 mA
	A1/C1/B1	Fault signal output 1	Sends out alarm signals when the inverter's safety features are activated (AC $250 \mathrm{~V} 1 \mathrm{~A}, \mathrm{DC} 30 \mathrm{~V} 1 \mathrm{~A}$). - Fault condition: Al and Cl contacts are connected (B 1 and Cl open connection) - Normal operation: B1 and C1 contacts are connected (A1 and C1 open connection)
	A2/C2	Fault signal output 2	Sends out alarm signals when the inverter's safety features are activated (AC $250 \mathrm{~V} 1 \mathrm{~A}, \mathrm{DC} 30 \mathrm{~V} 1 \mathrm{~A}$). - Fault condition: A2 and C2 contacts are connected - Normal operation: A2 and C2 contacts are open connection
$\begin{aligned} & \text { RS-485 } \\ & \text { Communication } \end{aligned}$	S+/S-	RS-485 signal line	Used to send or receive RS-485 signals.

Group	Keypad Display	Description
Operation	-	Configures basic parameters for inverter operation.
Drive	80	Configures parameters for basic operations. These include jog operation, motor capacity evaluation, torque boost, and other keypad related parameters.
Basic	1681 8	Configures basic operation parameters. These parameters include motor parameters and multi-step frequency parameters.
Advanced	1808	Configures acceleration or deceleration patterns, frequency limits, etc.
Control	16	Configures sensorless vector-related features.
Input Terminal	100	Configures input terminal-related features, including digital multi-functional inputs and analog inputs.
Output Terminal		Configures output terminal-related features such as relays and analog outputs.
Communication	$\begin{array}{llll}1 & 0 \\ 1 & 1 & 1\end{array}$	Configures communication features for RS-485 or other communication options.
Application	4 180	Configures functions related to PID control.
Protection		Configures motor and inverter protection features
Motor 2 (Secondary Motor)	$\begin{gathered} 69 \\ 110 \end{gathered}$	Configures secondary motor related features. The secondary motor (M2) group appears on the keypad only when one of the multi-function input terminals (In.65-In.69) has been set to 26 (Secondary motor).

Group \& Code selection

Step	Instruction	Keypad Display
1	Move to the group you want using the [MODE] keys. Press the [MODE] key for longer than 1 second to move in the opposite direction.	
2	Move up and down through the codes using the [$\mathbf{\Delta}$] and [$\boldsymbol{\nabla}$] keys until you locate the code that you require.	
3	Press the [ENT] key to save the change.	-

When moving up and down through the codes using the $[\mathbf{\Delta}]$ and $[\mathbf{\nabla}]$ keys in each group, there are cases where the code number does not increase or decrease. This is because the number was left blank in the inverter program by expecting additional features or the program was set up to not display the unused features.

Navigating Directly to Different Codes

The following example details navigating to code dr. 95, from the initial code in the drive group (dr. 0).
This example applies to all groups whenever you would like to navigate to a specific code number.

	Step	Instruction	Keypad Display
	1	Ensure that you are currently at the first code of the drive group (dr.0).	E10.818
	2	Press the [ENT] key. Number " 9 " will flash.	\square
	3	Press the [$\mathbf{\nabla}]$ key and change the ones' place of the code "95" to "5."	\square
	4	Press the [MODE] to move to the tens' place. The cursor will move to the left and " 05 " will be displayed. At this time, the number " 0 " will be flashing.	195 108
	5	Press the [$\mathbf{\Delta}$] key to change the tens' place number from "0" to "9," so the designated code is "95."	1015 00
	6	Press the [ENT] key. Code dr. 95 is displayed.	18, 180

Fault Trips

Protection functions for output current and input voltage

[^3]
Fault Trips

Protection functions using abnormal internal circuit conditions and external signals

Keypad Display	Name	Type
Description		

Protection functions for communication options

Keypad Display	Name	Type	Description
1 19 1 1 1	Lost Command	Level	Displayed when a frequency or operation command error is detected during inverter operation by controllers other than the keypad (e.g., using a terminal block and a communication mode). Operates when Pr. 12 is set to a value other than 0.
	10 Board Trip	Latch	Displayed when the I/O board or external communication card is not connected to the inverter or there is a bad connection.
6 0 0			Displayed when the error code continues for more than 5 sec . ('Errc' -> '-rrc' -> 'E-rC' ->'Er-c' -> 'Err-' -> '- -rc' -> 'Er- - - -> '- - - -' -> 'Errc' -> \cdot..)
	Option Trip -1	Latch	Displayed when a communication error is detected between the inverter and the communication board. Occurs when the communication option card is installed.

Warning Messages

G100/G100C

Peripheral Devices

Braking Resistor Specification

Capacity(kW)		Resistance(Ω)	Rated Capacity(W)
	0.4	300	100
	0.75	150	150
	1.5	60	300
	2.2	50	400
	3.7	33	600
	4	33	600
	5.5	20	800
	7.5	15	1200
	11	10	2400
	15	8	2400
	18.5	5	3600
	22	5	3600

Capacity(kW)		Resistance(Ω)	Rated Capacity (W)
3-Phase 400V Class	0.4	1200	100
	0.75	600	150
	1.5	300	300
	2.2	200	400
	3.7	130	600
	4	130	600
	5.5	85	1000
	7.5	60	1200
	11	40	2000
	15	30	2400
	18.5	20	3600
	22	20	3600

* The standard for braking torque is 150% and the working rate (\%ED) is 5%. If the working rate is 10%, the rated capacity for braking resistance must be calculated at twice the standard.

Compatible Circuit Breaker, Leakage Breaker and Magnetic Contactor Models (Manufactured by LS)

Capacity(kW)		Circuit Breaker			Leakage Breaker		Magnetic Contactor	
		Model	Current(A)	Specific Model Name	Model	Current(A)	Model	Current(A)
3-Phase 200V Class	0.4	UTE100H	15	UTE100 H-FTU $15 \cdot 3 \mathrm{P} \cdot \mathrm{UL}$	EBS33c	5	MC-6a	9
	0.75					10	MC-9a, MC-9b	11
	1.5					15	MC-18a, MC-18b	18
	2.2		20	UTE100.H•FTU $20 \cdot 3 \mathrm{P} \cdot \mathrm{UL}$		20	MC-22b	22
	4.0		30	UTE100.H•FTU $30 \cdot 3 \mathrm{P} \cdot \mathrm{UL}$		30	MC-32a	32
	5.5	UTS150H	50	UTS150.H•FTU $50 \cdot 3 \mathrm{P} \cdot \mathrm{UL}$	EBS53c	50	MC-50a	55
	7.5		60	UTS150•H•FTU•60.3P-UL	EBS63c	60	MC-65a	65
	11		80	UTS150•H•FTU•80•3P•LL•UL	EBS103c	100	MC-85a	85
	15		100	UTS150•H•FTU•100•3P•LL•UL		125	MC-130a	130
	18.5		125	UTS150•H•FTU•125•3P•LL•UL	EBS203c	150	MC-150a	150
	22		150	UTS150•H•FTU•150•3P•LL•UL		170	MC-180a	185
3-Phase 400V Class	0.4	UTE100E	15	UTE100•E•FTU•15•3P•UL	EBS33c	5	MC-6a	7
	0.75						MC-6a	
	1.5					10	MC-9a, MC-9b	9
	2.2						MC-12a, MC-12b	12
	4.0		20	UTE100•E•FTU•20-3P-UL		20	MC-18a, MC-18b	18
	5.5		30	UTE100-E•FTU•30.3P-UL		30	MC-22b	22
	7.5						MC-32a	32
	11	UTS150L	50	UTS150-L•FTU•50-3P•LL•UL	EBS53c	50	MC-50a	50
	15		60	UTS150•L•FTU•60.3P•LL•UL	EBS63c	60	MC-65a	65
	18.5		70	UTS150.L•FTU•70.3P•LL.UL	EBS103c	75	MC-75a	75
	22		70	UTS150.L•FTU•90.3P•LL•UL		100	MC-85a	85

Fuse and Reactor Specifications

Capacity (kW)		AC Input Fuse			AC Reactor	
		Model	Current (A)	Voltage (V)	Inductance (mH)	Current (A)
3-Phase 200V Class	0.4	DFJ-10 1)	10	600	1.20	10
	0.75					
	1.5	DFJ-15	15		0.88	14
	2.2	DFJ-20	20		0.56	20
	4.0	DFJ-30	30		0.39	30
	5.5	DFJ-50	50		0.30	34
	7.5	DFJ-60	60		0.22	45
	11	DFJ-80	80		0.16	64
	15	DFJ-100	100		0.13	79
	18.5	DFJ-110	110		0.12	96
	22	DFJ-125	125		0.1	112
3-Phase 400 V Class	0.4	DFJ-10	10		4.81	4.8
	0.75					
	1.5				3.23	7.5
	2.2	DFJ-15	15		2.34	10
	4.0	DFJ-20	20		1.22	15
	5.5	DFJ-30	30		1.12	19
	7.5	DFJ-35	35		0.78	27
	11	DFJ-50	50		0.59	35
	15	DFJ-60	60		0.46	44
	18.5	DFJ-70	70		0.40	52
	22	DFJ-100	100		0.30	68

Note1) DFJ is class $\mathrm{J} / 600 \mathrm{~V}$ level model name of the bussmann company.
! Caution Use class CC, G, J, L, R or T UL listed Input fuse and UL listed breaker only. See the table above for the voltage and current rating of the fuse and the breaker.

General Drive

G100/G100C
 Dimensions

$0.4 \sim 0.8 \mathrm{~kW}(\mathrm{G} 100 \mathrm{C})$
Units: mm [Inches]

Product (Model)	W1	W2	H1	H2	H3	D1	A	B	\varnothing
0004G100C-2	70 (2.76)	65.5 (2.58)	128 (5.04)	119 (4.69)	4.5 (0.18)	130 (5.11)	4.5 (0.18)	4.5 (0.18)	4.5 0004G100C-4
0008G100C-2	70 (2.76)	65.5 (2.58)	128 (5.04)	119 (4.69)	4.5 (0.18)	135 (5.31)	4.5 (0.18)	4.5 0008G100C-4	$0.18)$

$1.5 \sim 2.2 \mathrm{~kW}$ (G100C)

Product (Model)	W1	W2	H1	H2	H3	D1	A	B	\varnothing
0015G100C-2	100 (3.93)	95.5 (3.76)	128 (5.04)	119 (4.69)	4.5 (0.18)	135 (5.31)	4.5 (0.18)	4.5 (0.18)	4.5 $0015 G 100 C-4$
0022G100C-2	100 (3.93)	95.5 (3.76)	128 (5.04)	119 (4.69)	4.5 (0.18)	135 (5.31)	4.5 (0.18)	4.5 (0.18)	4.5 002 G100C-4

Product (Model)	W1	W2	H1	H2	H3	D1	A	B	\varnothing
0040G100-2	140	132	128	120.5	5		15		4.5
0040G100-4	(5.51)	(5.20)	(5.04)	(4.74)	(0.20)	(6.10)	-	4.5	

$0.4 \sim 0.8 \mathrm{~kW}$

Product (Model)	W1	W2	H1	H2	H3	H4	D1	A	B	\varnothing
0004G100-2	86.2 (3.39)	76.2 (3.00)	154 (6.06)	154 (6.06)	164 (6.46)	5 (0.20)	131.5 (5.18)	5 (0.20)	4.5 (0.18)	4.5 0004G100-4
0008G100-2	86.2 (3.39)	76.2 (3.00)	154 (6.06)	154 (6.06)	164 (6.46)	5 (0.20)	131.5 (5.18)	5 (0.20)	4.5 (0.18)	4.5 0008G100-4

G100/G100C

Dimensions

Product (Model)	W1	W2	H1	H2	H3	H4	D1	A	B	\varnothing
0015G100-2	101 (3.98)	90 (3.54)	167 (6.57)	167 (6.57)	177 (6.97)	5 (0.20)	150.5 (5.93)	5.5 (0.22)	4.5 (0.18)	4.5 (0.18)
0022G100-2	101 (3.98)	90 (3.54)	167 (6.57)	167 (6.57)	177 (6.97)	5 (0.20)	150.5 (5.93)	5.5 (0.22)	4.5 (0.18)	4.5 (0.18)

4.0kW

Product (Model)	W1	W2	H1	H2	H3	H4	D1	A	B	\varnothing
0040G100-2	135	125	183	183	193	5	150.5	5	4.5	4.5
0040G100-4	(5.31)	(4.92)	(7.20)	(7.20)	(7.60)	(0.20)	(5.93)	(0.20)	(0.18)	(0.18)

Product (Model)	W1	W2	H1	H2	H3	H4	D1	A	B	\varnothing
0055G100-2	180 (7.09)	상부:162(6.38) 하부:170(6.70)	220 (8.66)	229.5 (9.04)	240 (9.45)	5.5 (0.22)	144 (5.67)	상부:9(0.35) 하부:5(0.20)	4.5 (0.18)	$\varnothing-1: 4.5(0.18)$ $\varnothing-2: 6(0.24)$
0075G100-2	180 (7.09)	상부:162(6.38) 하부:170(6.70	220 (8.66)	229.5 (9.04)	240 (9.45)	5.5 (0.22)	144 (5.67)	상부:9(0.35) 하부:5(0.20)	4.5 (0.18)	$\varnothing-1: 4.5(0.18)$ $\varnothing-2: 9(0.36)$

11kW-2, 11~15kW-4
Units: mm [Inches]

General Drive

G100/G100C
 Dimensions

Product (Model)	W1	W2	H1	H2	H3	H4	D1	A	B	\varnothing
0150G100-2										
0185G100-4	220	193.8	345	331	345	8	187	10.1	5.5	$\varnothing-1: 5.5(0.22)$
0220G100-4	(8.66)	(7.63)	(13.6)	(13.0)	(13.6)	(0.31)	(7.36)	(0.40)	(0.22)	$\varnothing-2: 11(0.43)$

18.5 ~ 22kW-2

Product (Model)	W1	W2	H1	H2	H3	H4	D1	A	B	\varnothing
0185G100-2	260	229.8	400	386	400	8	187	11.4	6.6 (0.26)	$\varnothing-1: 6(0.26)$
0220G100-2	(10.2)	(9.05)	(15.7)	(15.2)	(15.7)	(0.31)	(7.36)	(0.45)		

G100/G100C

Dimensions

Conduit

Conduit

* Without rubber packing

Product (Model)			W	H1	H2	H3	D1	D2	A1	A2	A3	B1	B2	B3	B4	C1	C2	Product weight [Kg]	Conduit weight [Kg]
A Frame	$\left.\begin{array}{\|c\|} \hline 3-P h a s e \\ 200 \mathrm{~V} \end{array} \right\rvert\,$	LSLV0004G100-2	90.4	237.1	193.9	59	146.7	77.7	25	25	90.4	18	34.6	51.2	69			1.04	1.2
			[3.559]	[9.335]	[7.634]	[2.323]	[5.776]	[3.059]	[0.984]	[0.984]	[3.559]	[0.709]	[1.362]	[2.014]	[2.717]				
		LSLV0008G100-2	90.4	237.1	193.9	59	146.7	77.7	25	25	90.4	18	34.6	51.2	69			1.06	1.2
			[3.559]	[9.335]	[7.634]	[2.323]	[5.776]	[3.059]	[0.984]	[0.984]	[3.559]	[0.709]	[1.362]	[2.014]	[2.717]				
	3-Phase 400V	LSLV0004G100-4	90.4	237.1	193.9	59	146.7	77.7	25	25	90.4	18	34.6	51.2	69			1.02	1.2
			[3.559]	[9.335]	[7.634]	[2.323]	[5.776]	[3.059]	[0.984]	[0.984]	[3.559]	[0.709]	[1.362]	[2.014]	[2.717]				
		LSLV0008G100-4	90.4	237.1	193.9	59	146.7	77.7	25	25	90.4	18	34.6	51.2	69			1.06	1.2
			[3.559]	[9.335]	[7.634]	[2.323]	[5.776]	[3.059]	[0.984]	[0.984]	[3.559]	[0.709]	[1.362]	[2.014]	[2.717]				

Units: mm [Inches]

Conduit

* Without rubber packing

Product (Model)			W	H1	H2	H3	D1	D2	A1	A2	A3	B1	B2	B3	B4	C1	C2	Product weight [Kg]	Conduit weight [Kg]
B Frame	$\begin{array}{\|c} 3-P h a s e \\ 200 \mathrm{~V} \end{array}$	LSLV0015G100-2	105.2	250.1	206.9	59	162.1	94.7	28	28	105.2	18	33.5	50	69			1.36	1.4
			[4.142]	[9.846]	[8.146]	[2.323]	[6.382]	[3.728]	[1.102]	[1.102]	[4.142]	[0.709]	[1.319]	[1.969]	[2.717]				
		LSLV0022G100-2	105.2	250.1	206.9	59	162.1	94.7	28	28	105.2	18	33.5	50	69			1.4	1.4
			[4.142]	[9.846]	[8.146]	[2.323]	[6.382]	[3.728]	[1.102]	[1.102]	[4.142]	[0.709]	[1.319]	[1.969]	[2.717]				
	3-Phase 400V	LSLV0015G100-4	105.2	250.1	206.9	59	162.1	94.7	28	28	105.2	18	33.5	50	69			1.4	1.4
			[4.142]	[9.846]	[8.146]	[2.323]	[6.382]	[3.728]	[1.102]	[1.102]	[4.142]	[0.709]	[1.319]	[1.969]	[2.717]				
		LSLV0022G100-4	105.2	250.1	206.9	59	162.1	94.7	28	28	105.2	18	33.5	50	69			1.42	1.4
			[4.142]	[9.846]	[8.146]	[2.323]	[6.382]	[3.728]	[1.102]	[1.102]	[4.142]	[0.709]	[1.319]	[1.969]	[2.717]				

\section*{General Drive}
 G100/G100C
 Dimensions

Conduit

Drive + Conduit

Conduit

* Without rubber packing

Product (Model)			W	H1	H2	H3	D1	D2	A1	A2	A3	B1	B2	B3	B4	C1	C2	Product weight [Kg]	Conduit weight [Kg]
C Frame	3-Phase 200V	LSLV0040G100-2	139.2	266.1	222.9	59	165.7	92.7	35	35	139.2	20	40	54	73			1.89	1.7
			[5.48]	[10.476]	[8.776]	[2.323]	[6.524]	[3.65]	[1.378]	[1.378]	[5.48]	[0.787]	[1.575]	[2.126]	[2.874]				
	3-Phase 400V	LSLV0040G100-4	139.2	266.1	222.9	59	165.7	92.7	35	35	139.2	20	40	54	73			1.92	1.7
			[5.48]	[10.476]	[8.776]	[2.323]	[6.524]	[3.65]	[1.378]	[1.378]	[5.48]	[0.787]	[1.575]	[2.126]	[2.874]				

Units: mm [Inches]

Drive + Conduit

Conduit

Product (Model)			W	H1	H2	H3	D1	D2	A1	A2	A3	B1	B2	B3	B4	C1	C2	Product weight [Kg]	Conduit weight [Kg]
$\begin{gathered} \text { D } \\ \text { Frame } \end{gathered}$	3-Phase 200V	LSLV0055G100-2	184.2	316.1	269.9	60.8	157.6	88.2	6	34	184.2	22	42	53	71	42	14	3.08	2.1
			[7.252]	[12.445]	[10.626]	[2.394]	[6.205]	[3.472]	[0.236]	[1.339]	[7.252]	[0.866]	[1.654]	[2.087]	[2.795]	[1.654]	[0.551]		
		LSLV0075G100-2	184.2	316.1	269.9	60.8	157.6	88.2	6	34	184.2	22	42	53	71	42	14	3.21	2.1
			[7.252]	[12.445]	[10.626]	[2.394]	[6.205]	[3.472]	[0.236]	[1.339]	[7.252]	[0.866]	[1.654]	[2.087]	[2.795]	[1.654]	[0.551]		
	3-Phase 400 V	LSLV0055G100-4	184.2	316.1	269.9	60.8	157.6	88.2	6	34	184.2	22	42	53	71	42	14	3.08	2.1
			[7.252]	[12.445]	[10.626]	[2.394]	[6.205]	[3.472]	[0.236]	[1.339]	[7.252]	[0.866]	[1.654]	[2.087]	[2.795]	[1.654]	[0.551]		
		LSLV0075G100-4	184.2	316.1	269.9	60.8	157.6	88.2	6	34	184.2	22	42	53	71	42	14	3.12	2.1
			[7.252]	[12.445]	[10.626]	[2.394]	[6.205]	[3.472]	[0.236]	[1.339]	[7.252]	[0.866]	[1.654]	[2.087]	[2.795]	[1.654]	[0.551]		

\section*{General Drive}
 G100/G100C
 Dimensions

Conduit

Drive + Conduit

Conduit

*After removing rubber packing

Product (Model)			W	H1	H2	H3	H4	H5	D1	D2	A1	A2	A3	B1	B2	B3	B4	Product weight [Kg]	Conduit weight [Kg]
E Frame	$\begin{aligned} & \text { 3-Phase } \\ & \text { 200V } \end{aligned}$	LSLV0110G100-2	180	324	290	61.3	41.1	25	173	83.5	55	58	180	35	55	70	88.1	4.84	0.45
			[7.087]	[12.756]	[11.417]	[2.413]	[1.618]	[0.984]	[6.811]	[3.287]	[2.165]	[2.283]	[7.087]	[1.378]	[2.165]	[2.756]	[3.468]		
	3-Phase 400V	LSLV0110G100-4	180	324	290	61.3	41.1	25	173	83.5	55	58	180	35	55	70	88.1	4.89	0.45
			[7.087]	[12.756]	[11.417]	[2.413]	[1.618]	[0.984]	[6.811]	[3.287]	[2.165]	[2.283]	[7.087]	[1.378]	[2.165]	[2.756]	[3.468]		
		LSLVO150G100-4	180	324	290	61.3	41.1	25	173	83.5	55	58	180	35	55	70	88.1	4.91	0.45
			[7.087]	[12.756]	[11.417]	[2.413]	[1.618]	[0.984]	[6.811]	[3.287]	[2.165]	[2.283]	[7.087]	[1.378]	[2.165]	[2.756]	[3.468]		

Units: mm [Inches]

General Drive

G100/G100C
 Dimensions

Conduit

Drive + Conduit

Conduit

* After removing rubber packing

Product (Model)			W	H1	H2	H3	H4	H5	D1	D2	A1	A2	A3	B1	B2	B3	Product weight [Kg]	Conduit weight [Kg]
G Frame	3-Phase 200V	LSLV0185G100-2	260	449	400	91.5	59.6	40	187	100	80	84	255	38	68	86.6	11.1	0.77
			[10.236]	[17.677]	[15.748]	[3.602]	[2.346]	[1.575]	[7.362]	[3.937]	[3.150]	[3.307]	[10.039]	[1.496]	[2.677]	[3.409]		
		LSLV0220G100-2	260	449	400	91.5	59.6	40	187	100	80	84	255	38	68	86.6	11.18	0.77
			[10.236]	[17.677]	[15.748]	[3.602]	[2.346]	[1.575]	[7.362]	[3.937]	[3.150]	[3.307]	[10.039]	[1.496]	[2.677]	[3.409]		

Memo

RFI FILTERS

THE LS RANGE OF POWER LINE FLLTERS FF (Footprint) SERIES, HAVE BEEN SPECIFICALLY DESIGNED WITH HIGH FREQUENCY LS INVERTERS. THE USE OF LS FILTERS, WITH THE INSTALLATION ADVICE OVERLEAF HELP TO ENSURE TROUBLE FREE USE ALONG SIDE SENSITIVE DEVICES AND COMPLIANCE TO CONDUCTED EMISSION AND IMMUNITY STANDARS TO EN 50081 -> EN61000-6-3:02 and EN61000-6-1:02

CAUTION

IN CASE OF A LEAKAGE CURRENT PROTECTIVE DEVICES IS USED ON POWER SUPPLY, IT MAY BE FAULT AT POWER-ON OR OFF.
IN AVOID THIS CASE, THE SENSE CURRENT OF PROTECTIVE DEVICE SHOULD BE LARGER THAN VALUE OF LEAKAGE CURRENT AT WORST CASE IN THE BELOW TABLE.

RECOMMENDED INSTALLATION INSTRUCTIONS

To conform to the EMC directive, it is necessary that these instructions be followed as closely as possible. Follow the usual safety procedures when working with electrical equipment. All electrical connections to the filter, inverter and motor must be made by a qualified electrical technician.

1- Check the filter rating label to ensure that the current, voltage rating and part number are correct.
2- For best results the filter should be fitted as closely as possible to the incoming mains supply of the wiring enclousure, usually directly after the enclousures circuit breaker or supply switch.
3- The back panel of the wiring cabinet of board should be prepared for the mounting dimensions of the filter. Care should be taken to remove any paint etc... from the mounting holes and face area of the panel to ensure the best possible earthing of the filter.
4- Mount the filter securely.
5- Connect the mains supply to the filter terminals marked LINE, connect any earth cables to the earth stud provided. Connect the filter terminals marked LOAD to the mains input of the inverter using short lengths of appropriate gauge cable.
6- Connect the motor and fit the ferrite core (output chokes) as close to the inverter as possible. Armoured or screened cable should be used with the 3 phase conductors only threaded twice through the center of the ferrite core. The earth conductor should be securely earthed at both inverter and motor ends. The screen should be connected to the enclousure body via and earthed cable gland.
7- Connect any control cables as instructed in the inverter instructions manual.

IT IS IMPORTANT THAT ALL LEAD LENGHTS ARE KEPT AS SHORT AS POSSIBLE AND THAT INCOMING MAINS AND OUTGOING MOTOR CABLES ARE KEPT WELL SEPARATED.

FF SERIES (Footprint)

G100 series / Footprint Filters											
INVERTER	POWER	CODE	CURRENT	VOLTAGE	LEAKAGE CURRENT	$\begin{aligned} & \text { DIMENSIONS } \\ & \text { L W H } \end{aligned}$	$$	WEIGHT	MOUNT	FIG.	OUTPUT CHOKES
THREE PHASE	NOM. MAX.										
0004G100-4	0.4kW		6A	400VAC	0.5 mA 27 mA	$213 \times 86 \times 60$	199x46	1.2 Kg aprox	M5	A	FS-2
0008G100-4	0.8 kW										
0015G100-4	1.5 kW		12A	400VAC	0.5 mA 27 mA	$226 \times 101 \times 60$	212x61	1.5 Kg aprox	M5	A	FS-2
0022G100-4	2.2kW										
0040G100-4	4 kW		16A	400VAC	0.5 mA 27 mA	$242 \times 135 \times 60$	228x90	1.8 Kg aprox	M5	A	FS-2
0055G100-4	5.5 kW		30A	400VAC	0.5 mA 27 mA	289x180x60	275x135	2 Kg aprox	M5	A	FS-2
0075G100-4	7.5kW										
0110G100-4	11 kW		50A	400VAC	0.5 mA 27 mA	$369 \times 180 \times 65$	344×135	2.5 Kg aprox	M5	A	FS-3
0150G100-4	15kW										
0185G100-4	18.5kW		60A	400VAC	0.5 mA 27 mA	$424 \times 220 \times 65$	399x150	2.8 Kg aprox	M5	A	FS-3
0220G100-4	22kW		70A	400VAC	0.5 mA 27 mA	$479 \times 260 \times 65$	454×190	2.8 Kg aprox	M6	A	FS-3

DIMENSIONS

FF SERIES (Footprint)

FIG. A

Safety Instructions

- For your safety, please read user's manual thoroughly before operating
- Contact the nearest authorized service facility for examination, repair, or adjustment.
- Please contact qualified service technician when you need maintenance. Do not disassemble or repair by yourself
- Any maintenance and inspection shall be performed by the personnel having expertise concerned.

- According to The WEEE Directive, please do not discard the device with your household waste

LSELECTRIC

[^0]: ※ When you switch iG5A to G100, please contact us for remote bracket

[^1]: - Only use the specified torque on the screw heads otherwise damage could occur. Loose screws can cause overheating and damage.
 - Use copper wires with $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ specification.

[^2]: ※ G100C series models support Q1/EG open collector output terminal as a substitute for A2/C2 relay terminal 2.

[^3]: * Ground Trip (GFT) feature is not provided in the products under 4.0 kW . Over current trip (OCT) or over voltage trip (OVT) may occur during low resistance grounding.

